Sunday 31 May 2015

Brain Stem Lesion MRI


Multi planner multi echo MRI study of brain has been performed. Sequences planned are FSE T1W, FSE T2W, FLAIR, T2w *GRE and DW images. Pc T1 

This MRI study of Brain with whole spine shows:
1. An ~ 25x27mm intral axial cystic lesion with an avidly enhancing eccentric nodule, lesion causing marked expansion of medulla, marked peri lesional odema extending in adjacent Pons. Obstruction at the level of outlet foramen of fourth ventricle causing mild communicating hydrocephalus. 
2. An associated severe cervico dorsal cord syrinx.
3. Avidly enhancing nodule of spinal drop metastasis at D7-8 and D11.

Imaging wise Possible DDs given were Neoplastic_ like Medullary Pilocystic Astrocytoma, Hemangioblastoma. 


Posterior fossa craniotomy with excision of lesion.

Histopathology report

Gross : The specimen consist of single nodular piece of gray white tissue, measuring 2x2x2cm. 


Sections shows moderately vascular neoplasm of both cellular and reticular areas comprising numerus proliferating vascular channels of varying caliber few of them appear to congested. The interstitium shows scattered round to oval cells having modestly hyperchromatic nuclei with coarse chromatin and abundant eosiophillic to vacuolated cytoplasm. These cells have indinct cytoplasmic margins. No atypical mitosis nor tumor necrosis seen. 

Impression :

Histopathological diagnosis : Hemangioblastoma. 

Posterior Fossa Mass MRI

Clinical Details  : About four to five months history of headaches over the vertex and the occipito-nuchal region, constant, not associated with any vomiting or blurring of vision. She has also been complaining of some blurring of vision. Examination shows papilloedema in the right eye. No other signs. 
Previous CT shows mild ventriculomegaly and an enhancing posterior fossa lesion behind right cerebellum with some degree of compression over 4th ventricle.
Advised MRI for better evaluation.


Multi planner multi echo MRI study of brain has been performed. Sequences planned are FSE T1W, FSE T2W, FLAIR, and DW images. PC T1. 
Single voxel MR Spectroscopy. 

An extra axial dural based ~ 60x30mm well-demarcated mass at the floor of posterior cranial fossa extending beyond foramen magnum in spinal canal, compressing cerebellar hemispheres , medulla and vertebrals at foramen magnum. Obstructive hydrocephalus due to fourth ventricle compression, peri ventricular ooze of Csf. 
No marked perilesional odema. Lesion is homogenously iso intense on cortical gray matter on T1 and iso intense on T2 images with homogeneous enhancement on post contrast T1.
On MRS, No NAA peak, significantly reduced Creatinine. High choline and choline -creatinine ratio. 

Impression: Imaging wise diagnosis given was Meningioma.


Posterior fossa craniotomy done with complete excision of lesion.

Histopathology report

A high grade extra medullary myeloid cell tumor without any lineage differentiation.
The tumor cells express LCA, Mic 2 Weak , CD 3, TdT few cells and CD10 and are CD 33, 7, 68, 61 and Glycophorin C.
The Mib 1 labeling index is approximately 50%

Impression : High grade extra medullary myeloid cell tumor without any lineage differentiation - LYMPHOMA.

" This is second time that Lymphoma has surprised me". 

Sunday 24 May 2015

Ulegyria MRI

Ulegyria refers to shrunken cortical gyri due to ischaemic damage in the neonatal period.
The main method of detecting ulegyria is MRI will reveal a focal gliosis of affected gyri. In addition, unaffected gyri are also present especially in watershed regions indicating delayed effects of perinatal hypoxic damage.
There are three main criteria for diagnosing ulegyria using MRI. The presence of a poorly demarcated lesion, atrophy and thinning of the cortex resulting in the characteristic “mushroom” like shape of ulegyria and presence of white matter signal abnormalities on FLAIR.
Ulegyria must be differentiated from polymicrogyria, which is a neuronal migration disorder, characterized by excessive folding of the surface gyri and a thickening of the cerebral cortex, rather than the sulcal scarring that is typical of ulegyria.
The period in which polmicrogyria and ulegyria emerge is also different. Polymicrogyria typically forms while the embryo's central nervous system is maturing. Ulegyria is acquired later in development during the perinatal period after neuronal migration has already occurred. It is also suspected that polymicrogyra is genetically linked, whereas ulegyria is caused by environmental factors like ischemia.
Polymicrogyria can lead to similar conditions that are linked to ulegyria such as mental retardation, cerebral palsy, and epilepsy. It has been observed that patients with polymicrogyria are not receptive to epilepsy surgery. However, responses of patients with ulegyria to similar surgeries are still not fully known, which makes distinction of these two disorders significant. 

Role of MR Csf flow study in NPH

By definition NPH is Ventriculomegaly on MRI with normal CSF pressure, altered CSF dynamics.

Of course NPH is a clinical diagnosis.
The classical clinical triad of NPH is
1) urinary incontinence
2 ) deterioration in cognition (dementia) and
3 ) Ataxia i.e. Gait disturbances.
As the name suggests mean CSF opening pressure in patients with NPH is within the normal range with a classic neurological sign is magnetic gait.

Best diagnostic clue on MRI is ventricles and Sylvian fissures symmetrically dilated out of proportion to sulcal enlargement, with normal hippocampus which distinguishes NPH from atrophy.
Ventriculomegaly is prominent in all 3 horns of lateral ventricles and 3rd ventricle, with relative sparing of 4th ventricle.

Role of MRI is now not confined only to support the clinical diagnosis of NPH but is to identify shunt-responsive NPH pts from non responsive by calculating aqueductal stroke volume non invasively.
This is because studies have shown that aqueductal stroke volume in patients of NPH decreases later in the disease process despite clinical progression and classifcal findings on MRI this has been theorized to be caused by cerebral atrophy, which indicates that the patient is unlikely to respond to shunt surgery.

Normal CSF flow and its dynamics

The stroke volume across aqueduct is the average CSF volume flowing through the aqueduct in one cardiac cycle, craniocaudad during systole OR caudocraniad during diastole.
Normal values of stroke volume is < .04 ml/cycle
It is assumed that the net flow over 1 cardiac cycle is [negligible enough to be considered as] zero
Aqueductal velocity (caudal): 3-8mm/s
The peak velocity was determined from the maximum value of the measured velocities of each cardiac phase.

CSF flow study findings in NPH
In NPH actually there is lack of flow from the cisternal and subarachnoid spaces with significant increase in amount of ventricular csf flow.
There increased flow void across aqueduct with increase stroke volume.
1) Increased aqueductal stroke volume is the average volume of CSF moving through the cerebral aqueduct calculated by summing the absolute values of stroke volume in systole and diastole and dividing by 2
i.e   Forward stroke volume +  Reverse stroke volume   /   2
2) Increased aqueductal peak velocity.

Various publications have set various normal and abnormal ranges.
Flow rate of > 24.5mL/min 95% specific for NPH.
Stroke volume of > 42 microL shown on one paper to predict good response from shunting was statistically significant (P < .05).Studies have shown that aqueductal stroke volume decreases later in the disease process despite clinical progression.
Sroke volume upper limit is now suggested to be variable between institutions due to intrinsic scanner differences, thus each centre should obtain their own "normal values", with the upper limit being suggested as two times the normal value.
There was no statistically significant relationship between aqueductal CSF flow void score and responsiveness to shunting.

Case 1

With clinical diagnosis of NPH

MR brain reveals diffuse cerebral and cerebellar cortical atrophy.
The ventricular dilatation is disproportionate to the amount of cortical atrophy, scalloping of inferior margin of corpus callosum and prominent flow void in posterior portion of third ventricle, across cerebral aqueduct and superior portion of fourth ventricle consistant with clinical diagnosis of NPH.
Csf flow study report :
Gated cine phase contrast study was performed to evaluate the CSF flow.
The diastolic phases are equal in number to the systolic.
The stroke volume is 41 microliters per cycle consistent with shunt responsive status (Reference : Patients with stroke volume more than 40 microliters respond well to VP shunt _ Bradley et al)

Case 2 

Atrophy Vs NPH clinically

MRI brain reveals moderate cerebral and cerebellar atrophy. The ventricular dilatation is mildly disproportionate to the amount of cortical atrophy.

Csf flow study report :
Gated cine phase contrast study was performed to evaluate the CSF flow.
The diastolic phases are equal in number to the systolic. The stroke volume is 30 microliters per cycle consistent with non-shunt responsive status. ( Reference : Patients with stroke volume more than 40 microliters respond well to VP shunt _ Bradley et al).

Dr Deepak Patkar (HOD, Nanawati Superspeciality Hospital, Vile Parle, Mumbai)
Dr Balaji Anvekar (Short visiting Fellowship in Neuroradiology and Recent Advances in Neuroimaging)

Friday 15 May 2015

Syntelencephaly MRI

A 14 yo male child, birth history uneventful.Complaints multiple episodes of seizures since 10 months with history of developmental delay and clinical impression of cerebral palsy with epilepsy

On MRI, 
The interhemispheric fissure not visualized in fronto parietal region with midline fusion of the cerebral hemispheres, single lateral ventricle cavity. 
The sylvian fissure extending across the midline. Body of corpus callosum is deficient. 
Normal 3rd and 4th ventricle.
The fused superior frontal cortex is thick , has a agyric / polymicrogyric  pattern.

Diagnosis : Syntelencephaly.

A varient of semilobar holoprosencephaly _ Congenital malformation of brain also known as Middle Interhemisheric variant.
A rare malformation in which the cerebral hemisphere fails to divide in the posterior frontal and parietal region.

Similar case : Semi-lobar-holoprosencephaly

Contributed by Dr Mitusha Verma SR DNB Radiology Nanavati. 

Thursday 14 May 2015

Haemorrhagic encephalitis - CNS Leptospirosis MRI

41 y o male patient admitted with c/o bilateral Lower limb Pain, Fever and Rapidly falling platelets.
Lab Investigations on admission Hb- 11.0, Platelets - 20,000 , Creatinine - 2.5, Bil(T)- 3.7, SGOT - 185, LDH- 1570

MRI Brain

Axial T1 and T2w images:
Axial GRE images:
DW images:
Sagittal T2wi for pituitary:

MRI shows multiple, patchy T2 hyperintense lesions of varying sizes on Flair and T2 W images in bilateral cerebral parenchyma involving the cortex and sub cortical white matter.
Some of the lesions show hyperintense foci on T1 weighted images, which appear hypointense on T2 weighted images and bloom on gradient echo images representing hemorrhage.
Restricted diffusion along the pyramidal tracts from the corona radiata upto the pons. These lesions are symmetric. Similar changes are seen in the corpus callosum, especially in the genu and splenium.
The pituitary gland appears hyperintense on T1 weighted images and hypointense on T2 weighted images and is probably also involved.

Findings are suggestive of haemorrhagic encephalitis. It involves cerebral hemispheres, corpus callosum and brain stem, as described.
The middle cerebellar peduncles and pituitary gland are also involved.

Follow up lab investigations shows raising Creatinine to 6.9,  Platelets on lower side.
Dengue NS1Ag -negative, Chikungunya IgM- Negetive, Leptospira IgM positive, Malaria -ve.

Final diagnosis : 

Haemorrhagic encephalitis - CNS Leptospirosis


Hemorrhagic fevers are febrile illnesses with abnormal vascular regulation and vascular damage. Although the combination of fever and hemorrhage can be caused by a number of human pathogens: viruses, rickettsiae, bacteria, protozoa, and fungi, the term hemorrhagic fever usually refers
to a group of illnesses that are caused by 4 different families of
viruses: Arenaviridae, Filoviridae, Bunyaviridae, and Flaviviridae

Classic hemorrhagic fever with renal syndrome is a syndrome characterized by sequential periods of fever, hypotension, oliguria, and diuresis.

Headache may be associated with aseptic cerebral edema, or CNS hemorrhage .
Brainstem or posterior fossa subarachnoid hemorrhages are found.
May be associated with Pituitary dysfunction with pituitary apoplexy or panhypopituitarism


Infection caused by bacteria of the Leptospira type.
Symptoms - none to mild such as headaches, muscle pains, and fevers.
The disease presents with variable combinations of clinical syndromes, which cause diagnostic confusion.
In most cases hemorrhage in Leptospirosis occurs in the pulmonary and GI system and not in the Central Nervous system.
A small proportion of patients develop severe icteric illness with renal failure- Weils Disease.
Marked elevations of bilirubin with mildly elevated transaminases are some
characteristic features of leptospirosis.

Spectrum of CNS Leptospirosis

Aseptic Meningitis - most common
Rarely encephalitis , cerebellitis , myelitis.
Intracranial hemorrhage is a rare and serious presentation of leptospirosis.
Peripheral Nervous System - Polyneuritis.
Other associations- GBS , Stroke.

Contributed by Dr Mitusha Verma SR DNB Radiology Nanavati. 

Monday 11 May 2015

Understanding Primary Dystonia with Advanced MRI Sequences

A 13 year old male patient resident of UK came with complaints of Dystonic hand movements on activity, right more than Left.
No history of seizures. No obvious cognitive impairment. No prior investigations were done.

Routine MRI brain imaging

Conventional MRI Brain normal 

Arterial Spin Labelled Perfusion MRI images of Brain

What is Arterial Spin Labelled Perfusion MRI ? 
Uses magnetically labelled endogenous blood  water. 
Ideal in  brain as the arterial supply is  well defined &  perfusion to brain tissue is high.
Higher magnet strengths give improved ASL
Gives an idea of tissue perfusion without using contrast
Estimates cerebral blood flow in ml/gm/min

Diffusion Tensor Imaging and Fibre Tracking images of Brain

What is Diffusion Tensor Imaging ? 
A form of diffusion-weighted imaging
Analyzes the microstructural integrity of white matter
Fractional anisotropy -The major index for this discrepant diffusion 
Higher FA values correlate with more ordered tissue containing a larger number of aligned axons
Higher FA values reflect tissue integrity and coherence

Fractional Anisotropy Maps

Average fractional Anisotropy ( FA) values:

Putamen                      (Right) 0.293             (Left) 0.328
Posterior limb of IC    (Right) 0.616             (Left) 0.709
Genu of IC                  (Right) 0.693             (Left) 0.637
Corpus callosum         (Right) 0.697             (Left) 0.880
Thalamus                    (Right) 0310              (Left) 0.321

Thalamo cortical tract fibers appear relatively sparse on right side compared to left.
Corpus callosal and cortico spinal tract fibres appears more ore less symmetrical on both sides.


Average fractional Anisotropy values are more in putamen, Posterior limb of left internal capsule, Corpus callosum and left thalamus.
In the genu of internal capsules, the values are greater on right side.

Segmented Brain Volumes

Volumetry was performed using 3DSPGR acquisition.
Whole brain and segmented brain volumes were calculated.

Left putaminal volume is approximately 13 % more than right.

MR Spectroscopy

To summarize the findings in this case..
Structural MRI is normal.
MR spectroscopy is normal.
Arterial Spin Labelled MR Perfusion (ASL) show increased cerebral blood flow in left parietal cortex and caudate nuclei.
DTI and FA maps show Relatively dense Thalamo cortical tracts on left.
Segmented Brain Volume show 13 % increased putamen volume on left.

Review of Literature:

Primary Dystonias is a hyperkinetic movement disorder characterized by involuntary, repetitive twisting movements.
Early onset - prior to 26 years of age.
Associated with a known gene carrier status (e.g., DYT1).
Symptoms more likely  begin in  one extremity and have a tendency to be generalized.

Conventional MRI does not typically reveal brain abnormalities.

Segmented Brain Volumes
Putamen has been predominantly involved in focal hand dystonias.
The involved side show > 10% increase in putaminal volume.
Other areas which may be involved are thalami and caudate nucleus.

Summarization of Literature…
Gray matter changes are not restricted to the basal ganglia.
Sensorimotor cortices, thalamus, and cerebellum may also be involved
White matter aberrations mainly involve cortico-striato-pallido-thalamic and cerebello-thalamo-cortical pathways.
Whether these changes are causative or compensatory remains unknown.
Newer MRI sequences may provide an insight in understanding disease pathophysiology and intricate brain networks involved.

To conclude…
Advanced MRI sequences like ASL, DTI, Segmented brain volumes may provide more comprehensive insight into pathophysiology of dystonia.
Further studies in this regard are needed to understand these findings and link them to disorder-specific clinico-behavioral characteristics.

Newer advances in the pathophysiology of focal dystonias  Brain (2006), 129, 6–7
Thalamocortical Connectivity Correlates with Phenotypic Variability in Dystonia; May 2014 An Vo1,Wataru Sako1, Martin Niethammer1, Maren Carbon
Primary Dystonia: Conceptualizing the Disorder Through a Structural Brain Imaging Lens  Ritesh A. Ramdhani & Kristina Simonyan
Cortical somatosensory reorganization in children with spastic cerebral palsy: a multimodal neuroimaging study Front. Hum. Neurosci., 12 September 2014 Christos Papadelis1,2*†, Banu Ahtam1,2†, Maria Nazarova

Dr.Deepak Patkar (HOD Radiology) Nanavati Superspeciality Hospital, Mumbai
Dr.Mitusha Verma SR DNB Radiology Nanavati. 

MR Perfusion Imaging in Recurrence of Neoplasm with Subependymal spread : A Case Report

A fifty seven years old man, operated case of left parieto-temporal glioblastoma multiforme, post chemotherapy and post radiotherapy status.


Scan done on GE DISCOVERY 750 W 3 T scanner after injecting 10 ml of Dotarem.
Pre and post contrast MRI of the brain was performed using T1 and T2 weighted sequences in multiple planes, using a quadrature head coil. Perfusion studies of the brain were performed after intravenous injection of Dotarem using EPI sequences. Negative enhancement integral was evaluated. ROIs were placed within different parts of the lesion and normal appearing contralateral parenchyma and time intensity curves were plotted.
Single and multi voxel spectroscopy and chemical shift imaging were performed through the lesion using short TE (35 ms) PRESS sequences. Post processing was performed using FUNCTOOL on ADVANTAGE GE workstation.

Findings :

There is a large ill-defined, mixed signal intensity lesion in left parietotemproal region.  Multiple areas of blooming are seen within, suggestive of hemorrhagic changes.  Areas of restricted diffusion are also seen within the lesion which correspond to infarcts, likely treatment induced. Heterogeneous post-contrast enhancement is detected with non-enhancing areas representing necrosis.

These findings are suggestive of post-treatment changes admixed with residual neoplasm in left temporo-parietal region. Diffuse subependymal enhancement is detected along both lateral and third ventricles, suggestive of subependymal spread of neoplasm.

Single voxel spectroscopy from the enhancing component of the lesion showed . elevated choline and reduced NAA peak, along with elevated lactate levels. Cho / Cr ratio is 1.531 and Cho / NAA ratio is 4.529.

Multivoxel spectroscopy of necrotic areas reveal elevated lactate peak and diminished choline and NAA peaks suggestive of post radiation change.

The enhancing areas show increased perfusion with maximum rCBV ratio (calculated from signal intensity value) of 2.8.  The right subependymal areas of enhancement also demonstrate hyper perfusion with rCBV ratio calculated from signal intensity value) of 3 suggestive of high grade neoplastic infiltration.
The necrotic areas are hypoperfused.


Post treatment recurrence of neoplasm with sub ependymal spread.

CE - MRI, Dynamic susceptibility contrast MRI and MRS increase the diagnostic confidence of detecting tumor recurrence in a treated case of glioblastoma multiforme.


Dr. Deepak P. Patkar (HOD) Nanawati Superspeciality Hospital, Mumbai
Dr. Amit J. Choudhari Consultant Radiologist, Nanawati Superspeciality Hospital, Mumbai
Dr Balaji Anvekar